Lack of confidence in approximate Bayesian computation model choice.

نویسندگان

  • Christian P Robert
  • Jean-Marie Cornuet
  • Jean-Michel Marin
  • Natesh S Pillai
چکیده

Approximate Bayesian computation (ABC) have become an essential tool for the analysis of complex stochastic models. Grelaud et al. [(2009) Bayesian Anal 3:427-442] advocated the use of ABC for model choice in the specific case of Gibbs random fields, relying on an intermodel sufficiency property to show that the approximation was legitimate. We implemented ABC model choice in a wide range of phylogenetic models in the Do It Yourself-ABC (DIY-ABC) software [Cornuet et al. (2008) Bioinformatics 24:2713-2719]. We now present arguments as to why the theoretical arguments for ABC model choice are missing, because the algorithm involves an unknown loss of information induced by the use of insufficient summary statistics. The approximation error of the posterior probabilities of the models under comparison may thus be unrelated with the computational effort spent in running an ABC algorithm. We then conclude that additional empirical verifications of the performances of the ABC procedure as those available in DIY-ABC are necessary to conduct model choice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lack of confidence in ABC model choice

Approximate Bayesian computation (ABC) have become an essential tool for the analysis of complex stochastic models. Grelaud et al. (2009, Bayesian Ana 3:427–442) advocated the use of ABC for model choice in the specific case of Gibbs random fields, relying on a inter-model sufficiency property to show that the approximation was legitimate. We implemented ABC model choice in a wide range of phyl...

متن کامل

Bayesian Model Choice using Coupled ABC

In Neal (2010), a novel Approximate Bayesian Computation (ABC) algorithm, coupled ABC, was introduced. This paper shows how coupled ABC can be used in an efficient manner for model choice in a Bayesian framework. The methodology is applied to Gibbs random fields and stochastic epidemic models. Furthermore a very efficient simulation procedure for Gibbs random fields with a given sufficient summ...

متن کامل

Why approximate Bayesian computational (ABC) methods cannot handle model choice problems

Approximate Bayesian computation (ABC), also known as likelihood-free methods, have become a favourite tool for the analysis of complex stochastic models, primarily in population genetics but also in financial analyses. We advocated in Grelaud et al. (2009) the use of ABC for Bayesian model choice in the specific case of Gibbs random fields (GRF), relying on a sufficiency property mainly enjoye...

متن کامل

Convergence of Regression Adjusted Approximate Bayesian Computation

We present asymptotic results for the regression-adjusted version of approximate Bayesian computation introduced by Beaumont et al. (2002). We show that for an appropriate choice of the bandwidth, regression adjustment will lead to a posterior that, asymptotically, correctly quantifies uncertainty. Furthermore, for such a choice of bandwidth we can implement an importance sampling algorithm to ...

متن کامل

Bayesian Analysis of Survival Data with Spatial Correlation

Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study‎. ‎One of the most important issues in the analysis of survival data with spatial dependence‎, ‎is estimation of the parameters and prediction of the unknown values in known sites based on observations vector‎. ‎In this paper to analyze this type of survival‎, ‎Cox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 37  شماره 

صفحات  -

تاریخ انتشار 2011